The Dynamics of Coupled Planar
Rigid Bodies
Part II: Bifurcations, Periodic
Solutions, and Chaos

by Y.-G. Oh, N. Sreenath,
P.S. Krishnaprasad and ].E. Marsden

TECHNICAL
RESEARCH
REPORT

S Y STEMS
RESEARCH
C E N T E R

Supported by the
National Science Foundation
Engineering Research Center

Program (NSFD CD 8803012),
the University of Maryland,
Harvard University,
and Industry

TR 88-37



Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display acurrently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
1988 2. REPORT TYPE 00-00-1988 to 00-00-1988
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

The Dynamics of Coupled Planar Rigid Bodies Part 11: Bifurcations,
Periodic Solutions, and Chaos

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
University of Maryland,Systems Resear ch Center,College REPORT NUMBER
Park,MD,20742

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

seereport

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17.LIMITATION OF | 18 NUMBER | 19a NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 35
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18



The Dynamics of Coupled Planar Rigid Bodies
Part II: Bifurcations, Periodic Solutions, and Chaos

Y.-G. Oh*, N. Sreenath**, P.S. Krishnaprésad**, and J.E. Marsden*

3/4/88
Contents
§1 Introduction .......cccccieecenivenineeioneeneennenes reeneas . 2
§2 Bifurcation and Stability of Equilibria .................... 7
83 Periodic SOIUtIONS ...ceciveveeniinniersieeceeecrencoocsnnnes 15
§4 Chaotic SOlUtionS ..cceeeirreiieiiierniiiriieenirenerrennns 21
§5 DiSCUSSION .eeeveeireeirereennnenees eeererrrrereraaanaa———— 33
References .ooivviiiiiiiiiiiiiiiiiiceceeneeeraerier e 34

*

%k

Department of Mathematics, University of California, Berkeley CA 94720. Research partially
supported by DOE contract DE-AT03-85ER12097 and by AFOSR-URI grant AFOSR - 87 -
0073.

Department of Electrical Engineering and the Systems Research Center, University of
Maryland, College Park, Maryland 20742. This work was supported in part by the National
Science Foundation under grant OIR-85-00108, AFOSR-URI grant AFOSR-87-0073 and by
the Minta Martin Fund for Aeronautical Research.



§1 Introduction

Part I of this paper, namely Sreenath, Oh, Krishnaprasad, and Marsden [1987], hereafter
denoted [I], studied the Hamiltonian structure and equilibria for interconnected planar rigid bodies,
with the primary focus being on the case of three bodies coupled with hinge joints. The
Hamiltonian structure was obtained by the reduction technique, starting with the canonical
Hamiltonian structure in material representation and then quotienting by the group of Euclidean
motions. For three bodies, this Hamiltonian structure is as follows (see Figure 1): the phase space
is P = S! x S! x R3, parametrized by the two joint angles 0,; =: ¢ and 03, =: ¥ and three
momenta M = (l;, Ky, U3) (conjugate to the three angular variables (84, 05, 63) for the three
bodies) with the Poisson bracket

{t }:(i__@f_)ig._(_a_s___?g_),ai
S TR TPy R TR TR AT

NS AL AT W
Oy OHz /oy \dly Odls )y '

This phase space is obtained by first reducing to center of mass coordinates and then getting rid of

rotations via

_ T"‘(S1 x 8! x 81

51 sSlxslxRB.

P

Given a Hamiltonian H(¢, y, K1, 12, U3), the evolution equations f= {f,H} are equivalent to

. oH
Hy =‘a'¢_ s
2 =3y T3
. JH
u‘3 =_W’ > (1.2)
b = _oH
ouy  Oiy
o om
V = oo
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center of mass of bodies 1, 2, and 3

Figure 1

For this system the Hamiltonian is shown in [I] to be

1 1
H=§—(co,1w)=-2-(u,rlu) (1.3)

where

(ml’ 0)2, 0)3) = (él’ éz, 93) = JP‘

is the angular velocity vector and

5 Ap@) A9+ )]
I=1 Apn) I Ay(y) (1.4)
A3 +w)  Auy) I |

is the effective moment of inertia matrix; the entries are defined as follows: let ¢, b, e, d be the
positive distances shown in Figure 1 (i.e., distances between the centers of mass and the hinge
points; assume here that the center of mass of the central body is between the hinge points) and let
g;= mimj/(m1 +m, +m;), I}, L, I be the planar moments of inertia of each body,

~ 2 -
Il = Il + (812 + 813)0 R 13 = I3 + (823 + 813)(12 .



The Dynamics of Coupled Planar Rigid Bodies, Part I1 4

I, = L+ (g + 813)b2 + (€3 + 813)62 + 2g,3be cos o

be the augmented moments of inertia, and

A2(0) = (€5 + € 3)bccos ¢ + €5 ce cos(d + @) ,
A31(0) = gjscdcos o,

Aps(Y) = (Ey3 + € 3)de cos(y — &) + €;3bd cos y .

Equilibrium solutions are determined by setting the time derivatives in (1.2) to zero:

H _ M _ o ’
0 oy T’
. (1.5)
oH _oH _ oH _ ®, , aconstant
Ol; O  Oug 0 )

To further simplify the problem we will assume that the center of mass of the second body is

alligned with the two hinge points; i.e., that o =0 (see Figure 1). Then (1.5) is equivalent to the
system '

o _

;o

sin(o+vy) = —1tsind , ) (1.6)
siny = xsin¢ ,

where
€;3(b + e)c + £;,bc
- 613(b + C)d + 823d€
and < 1.7
€13(b+e)+€;5b
- Elgd ’ ]
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as was shown in [I].
It was also shown in [I] that there are always four or six equilibria, amongst which are the
four fundamental equilibria

. v) = (0,0), 0, n), (=, 0), (w, ) . (1.8)

When (X, 1) belongs to the shaded region in Figure 2, i.e.,, |T~1]<x <1 + 1, there are two
other equilibria determined by

1-02+10) ¥-12-1

S and cosy = o (1.9)

cos ¢ =

Correspondingly, the pairs (¢, ¥) lie in the shaded region of Figure 3.

K+1T=1"

Figure 2

For example, if m; =m, =m,, b=e¢=pd, and ¢ =2Ad, then x =2 and 1 =3y, so the
condition for four equilibria, |T—1|<x<7T+ 1,becomes |3 —-1|<A <3u + 1. Forinstance,
if p =1, this conditionis 2 <A <4. Thus as A leaves the range [2, 4], the number of solutions
drops from six to four.



The Dynamics of Coupled Planar Rigid Bodies, Part I1 6

v
|

2rn

Figure 3

In [I] it was shown that the equilibrium (0, 0) representing the straight stretched out solution
is stable for all system parameters. In §2 we study bifurcations of these equilibria and we determine
the eigenvalue evolution of these bifurcations and thereby determine that the solutions that are not
formally stable are not only unstable, but are spectrally and hence exponentially unstable, with
non-zero eigenvalues of the linearized equations on the real axis. In §3 we use the version of the
Weinstein-Moser theorem due to Montaldi, Roberts, and Stewart [1987] to show the existence of
two families of periodic orbits (with symmetries) near the stable equilibrium (¢, W) = (0, 0); they
are shown to be spectrally stable when they are nonresonant. Finally, in §4 we show that the
problem is, in general, non-integrable. This is done using the Melnikov method in the version
given by Holmes and Marsden [1983] to show that the homoclinic orbit present in the integrable

. case d =0 leads to transverse homoclinic orbits for small d # 0. General conditions for

integrability are not known to us.

We believe that the periodic solutions found in §4 are related to travelling waves in a long
chain of n coupled bodies (with torsional springs) or in the corresponding continuum limit n —
. This will be the subject of another investigation.



§2 Bifurcation of Equilibria

In this section we relate the bifurcations of equilibria to the degeneracies of the Hessian of the
energy function. This is used in the next section where we discuss the stability indices.

First of all, one can see directly from the equilibrium equations, as in [I], that a Hamiltonian
pitchfork-type bifurcation occurs at each of the three unstable fundamental equilibrium solutions, as
in Figure 4.

O Y xdt+1 _

. O kT1-1 _

xTt-1

5 W pan

Figure 4
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For example, if m; = m, =m,, ¢=2d, and b = e = d, the evolution of equilibria as A
ranges from A <2 to A >4 isshown in Figure 5.

— O30 —O3D — 0D

Figure §

These bifurcations, which can all be seen by direct calculation, will now be related to the
second variation, or Hessian, of the Hamiltonian. The symplectic leaves Pu of the phase space P
are defined by setting W, + I, + 13 =}, a constant. Equilibria for the system are exactly critical
points of H,, the restriction of H to P,. At these points, the Hessian of H, is simply the
restriction of the second variation of H to tangent vectors of Pu at the equilibrium point in
question. Since the Hamiltonian vector field restricted to the leaf has a zero eigenvalue iff the
Hessian does, it is a priori clear that a bifurcation of equilibria occurs only if the Hessian along the

leaf has a zero eigenvalue.
The Hessian is computed at one of the fundamental equilibria to have the form

) |
8°H = [ } 2.1)
0 B

asa 5 X 5 matrix with the variables in the order (i, it,, L3, 9, ) restricted to the subspace
defined by Sp, + 8y, + 83 =0, where J is given by (1.4) and where
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cos ¢ + %— cos($ + ) —i— cos(d + )
B = (positive constant) . (22)

% cos(o+ ) -11; cos ¥ + %— cos(¢ +y)

Ignoring the positive constant, we note that at the fundamental equilibria,

-

l.{.l }. _.1_..1 ..._.l
T T T T
B(O, 0) = ’ B(n’ 0) = ’
1 1 1 : 1 1 1
el —_— - —_— —_———
. T X T L T X T
-1 1 1, 1
T T T T
B0, m) = , B(n, nt) = . 3)
1 1.1 1 _1.1
L T X T | T K+T

Since J is positive definite, bifurcations of equilibria are determined by zero eigenvalues of B.
Since

det B(0,0) = —1-+-1-+ 1 >0,
X T

TS
(0, 0) never bifurcates. Since

x—-1-1
det B(x, 0) = —

1-x—-1
det B(0, &) = — ,
KT
and
T-K-1

det B(m, ) = e

we can expect these equilibria to bifurcate at x =T+ 1, X=1-1,and x=1- 1, respectively. As
we saw above, this is confirmed by a direct analysis of the equilibria.

To analyze the stability of these equilibria notice first that the stretched out state (0, 0) is
always stable, as we already know from [I]. For the state (m, ©), note that
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T—-x—-1 2k-TK -1
det B(n, &) = —— ., race B(m,®) = —

so B(m, ®) has

X > t—1 : onenegative and one positive eigenvalue,
K = T—1 : onenegative and one zero eigenvalue,

K < T—1: twonegative eigenvalues.

There are similar statements for the equilibria (x, 0) and (0, =) where T~ 1 isreplaced by ©+ 1
and 1 -1, respectively.

Theorem 2.1 The equilibrium (0, 0) is always stable and the other fundamental equilibria are
unstable, and in fact spectrally unstable.

The proof relies on

Lemma 2.2 Let A and B be two real n X n symmetric invertible matrices with different numbers
of negative eigenvalues. Then the infinitesimally symplectic matrix

MREM AR

has at least one positive (and so one negative) real eigenvalue.

Al -B
det
A Al

Proof of Lemma 2.2

o[, )

1 lB
Y
= 22" det
Ly o

(notice that A # 0 since we assume that A and B are invertible)
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1
1 —'X'B
= A% det
0 I+—LAB
12

= Kzndet(l+%AB) = det W2+ AB) .

The lemma follows from this sublemma.

Sublemma 2.3 Under the same hypothesis as Lemma 2.2, the matrix AB has at least one
negative eigenvalue.

Proof of Sublemma 2.3 Since we assume that A is invertible, A-! has the same inertia index
(number of negative eigenvalues) as A. Now, consider the 1-parameter family of symmetric
matrices M(t) =tA-1+ (1 -t)B, 0 <t<1. We know that the set of invertible symmetric matrices
has n+ 1 components which are characterized by inertia indices. Since M(0) and M(1) have
different indices and so are contained in different components and {M(t)} is connected, there must
be some 0 <ty<1 for which M(ty) is not invertible, i.e., there exists a non-zero vector v such
that M(tp)v =0, i.e.,

A1+ (1 ~ty)B)v = 0 .

Multiplying by A, we get

ABv = -

V.

to
-1
Here, —tp/(1 —ty) is negative since 0 <t; < 1. Therefore, AB has a negative eigenvalue. =

Remarks 1 We can refine this lemma to allow one of the matrices not to be invertible. More
specifically, let us assume that A is invertible of the type (p,q) and B is of type (p’, ¢, 1)
where r is the number of zero eigenvalues. Then AB must have at least one negative eigenvalue
if p>p’+r or q>q +r. This then yields Lemma 2.2 as before.

2 A generalization of Lemma 2.2 was pointed out by J. Howard [1987]; similar criteria for
Krein collisions (Hamiltonian Hopf bifurcations) would be of use in the case of three dimensional
coupled rigid bodies (cf. Krishnaprasad, Grossman, and Marsden [1987]).
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(3) Some related results and applications are given in Oh [1987].

Lemma 2.3 In the reduced symplectic space Pu’ the Hessian of the reduced Hamiltonian has the
form

where Y is a positive definite 2 x2 matrix and B is the matrix (2.2) in the canonical coordinate
near the equilibria given by (0, y, v,, V,), where

_ Ky H3 — H2
Vl = ) , V2= ) .

Proof of Lemma 2.3 This follows from the fact that at the equilibria, d?H are given by (2.1) in
T*(S! x §! x §1)/S! which is parametrized by (1, L, I3, &, ) and the fact that

(Mz“ul H3 = Ha )
2 ’ 2 ,¢,W

are canonical coordinates on Pu near the equilibria; the latter is checked directly from the bracket
1) =

Proof of Theorem 2.1 We know that in canonical coordinates, the symplectic structure is given by
0 I
G o
and by Lemma 2.3, the Hessian has the form
0
0 B

where the number of negative eigenvalues of J* is zero and, as we illustrated at B(x, &), B has at
least one negative eigenvalue. Therefore, by Lemma 2.2 the linearization of the Hamiltonian vector



The Dynamics of Coupled Planar Rigid Bodies, I1 ' 13

least one negative eigenvalue. Therefore, by Lemma 2.2 the linearization of the Hamiltonian vector

AN

has at least one real eigenvalue and so is spectrally unstable and so is non-linearly unstable. m

field at the equilibria, namely

Finally, we study the stability of the bifurcation branches at the equilibria. By Theorem 2.1,
we know that the linearization of the Hamiltonian vector field at (z, &) (similarly for (0, %), (x,
0)) has at least one and so two real eigenvalues. This came from observing that

has
detB(m,n) >0 if x<1t-~1,

detB(m,m) < 0 if x> 1-~1.

Using Lemma 2.2, we get Figure 6 for the positions of eigenvalues of DXy(n, 1) with
respect to the parameters (%, X).

x>1-1 k=1-1 k<t-l
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By the spectral property for the eigenvalues of an infinitesimally symplectic matrix, any small
perturbation of the DXy(m, ©) at x=T—1 must have real eigenvalues. Hence the DX}, at the
bifurcated equilibria must have real eigenvalues at least near the bifurcation parameter. Thus we
have the following theorem.

Theorem 2.4 All the bifurcation branches from unstable equilibria are themselves unstable.



§3 Periodic Solutions

We have seen that the straight stretched-out state (¢, ¥) = (0, 0) is stable for all system
parameters. Correspondingly, the second variation of the Hamiltonian on the symplectic leaf is
positive definite at this point. If @, denotes the angular velocity of this solution, its angular
momentum is

3
o= H+Hy+ 3 = B z J;;(0, 0)
ij=1
and its energy is

3
Eg = -%((oo(l, 1, 1),0J(1, 1, 1) = %‘03% 2 3;(0, 0) 3.1)

ij=1

where J is the matrix (1.4). The theorem of Weinstein [1973], [1978] and Moser [1976] gives the
following:

Theorem 3.1 For any small € > 0, there are at least two distinct periodic orbits near this
equilibrium on the energy surface H-1(Eg + €) in the leaf P,.

These periodic motions in the reduced symplectic manifold produce quasi-periodic motion on
a torus in the original phase space T*@S1x S1x S!) by S! symmetry,

Theorem 3.1 does not directly tell us properties of these periodic orbits, such as their spatial
structure. We will obtain such information in the case of a symmetric system by applying an
equivariant verstion of the Weinstein-Moser Theorem due to Montaldi, Roberts, and Stewart
[1987].

We assume that the 3-body system is symmetric under the transformation of configuration
space given by

This means, in effect, that bodies 1 and 3 are mechanically identical. This assumption gives the
symmetries J;; =J33 and J;, =J,3 of the metric J besides J being symmetric. The
transformation (3.2) on S! x S! x S! induces a Z,-action on the phase space T*(S! x S! x S!)

and the Hamiltonian (= the kinetic energy) is invariant under this action; this is our symmetry
~ assumption. Obviously, this Z,-action commutes with the diagonal S!-action and so it induces a
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symplectic Zj-action on the reduced space P,,. In canonical coordinates (9, W, vy, V) on P,
where $=0,-0,, y=03-06,, v; =y - 1;)/2, and v;5 = (U3 —H)/2, this Z,-action can be
written as

@ W, Vi V2) = Y, =6, —Vy,—Vy) . (3.3)

Its fixed manifold is given by
F = {(8;1, 032, Vi, Vo) | ¢ + y = O(mod 27m)v; + v, =0} . (3.4)
We have the following general facts about fixed manifold under symplectic actions:

Proposition 3.2 Let a compact Lie group G act symplectically on a symplectic manifold P.
Then each component of the fixed point set Fix(G) is a symplectic submanifold of P.

Proof See, for instance, Guillemin and Sternberg [1984]. =

Proposition 3.3 Let H: P — R be a G-invariant Hamiltonian and let Xy be the associated
Hamiltonian vector field. Then Xy is tangent to each component of Fix(G) and Xy | Fix(G) has
the Hamiltonian H | Fix(G).

Proof See Golubitsky and Stewart [1987]. =

From these propositions, we see that F is a symplectic submanifold (in fact, one can easily
check this without referring to Proposition 3.2) and the restriction of the Hamiltonina H will give a
Hamiltonian on F. Notice that F is actually diffeomorphic to T*S! which is two dimensional,
and so the dynamics on it is completely integrable. From the general fact that zeros of Xy in F
are zeroes of Xy, Wcan see that Xy g has two zeroes and corresponding to (¢, ¥) = (0, 0)
and (7w, ©) among the four fundamental equilibria.

Focussing on the induced dynamics on F = T*S1, notice that any level surfaces of the
reduced Hamiltonian in F is compact since those of the original Hamiltonian H are. Since we
have proved that the induced Hamiltonian vector field Xy has one stable equilibrium and one
unstable one, the dynamics is qualitatively similar to the reduced dynamics of the coupled two body
case. In particular, we conclude that the original Hamiltonian system in P, has infinitely many
periodic orbits and at least two homolinic orbits.

We summarize the above discussions:
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Theorem 3.4 For the symmetric coupled planar 3-body system, every symmetric initial condition
gives rise to a symmetric periodic motion (up to diagonal action by S!) unless the initial energy is
the same as the energy of the two equilibria (0,0) and (r, ®). Moreover, the energy surface of
the unstable equilibrium (%, &) contain two homoclinic orbits issuing from it.

From this theorem we may expect that the slightly unsymmetric system will have chaotic
phenomena. This may be proved by an adaptation of the Melnikov method; see §4 below.

We consider the dynamics on the energy surface H-1(E, +¢€) for small € > 0. We already
know from Theorem 3.1 that this level surface contains at least two distinct periodic orbits. To get
information on their symmetry, we use the following:

Theorem 3.5 (Equivariant Weinstein-Moser Theorem; Montaldi, Roberts, and Stewart [1987].)
Let G be a group acting symplectically on a symplectic maniifold (P, Q) and H be an invariant
Hamiltonian. Let ze P be a fixed point for the corresponding Hamiltonian vector field and
assume:
H1 the Hessian d?H(z) is nondegenerate; and
H2 d2H(z) restricted to a resonance subspace V, is positive definite. (V, is
the subspace of T,P that is the real part of the direct sum of all the generalized
eigenspaces of eigenvalues of L = DXy(z) that are multiples of the purely imaginary
eigenvalue A.)
Then for every isotropy subgroup X of the G x S1 action on V;, and for € >0 sufficiently
small, there are at least

1
7 dim Fix(Z, Vy) (3.5)
periodic trajectories of Xy with periods near 2n/| A | and symmetry group containing X, on the
energy surface H=E;+¢.

To apply this theorem, we need information about the eigenvalues and generalized eigenspace
of the linearization DXy(z) of the Hamiltonian vector field at the stable equilibrium. The
Hamiltonian is quite complicated and so it is tedious to find the eigenvalues and eigenspace directly.
Fortunately, we do not have to do this. Instead, we will fully exploit the Z,-symmetry and solve
using general facts about symplectic representations (see Guillemin and Sternberg [1984]). We
identify the tangent space to P, at the stable equilibrium with C? by setting

z; = §+iv,; and 2z, = y+iv, . (3.6)
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Then the induced Z,-representation on this tangent space is decomposed into irreducible
representations; C2 = Cy @ C; where C; is the trivial piece and C, is the non-trivial piece. In
fact, Cy = {(z4, 2) | Z; + z, = 0}, which is the tangent space to F at the equilibrium and C, =
{21, 2) | 21 -2, =0).

The group Z, actson C; trivially andon C; by (z, z) = (- z, - z). Since Hessian of H
at this equilibrium is positive definite, all eigenvalues of the linearization of Xy are imaginary and
come in pairs *iA;, +iA, where A; and A, may be the same. Since C, is the tangent space to
F, the linearization will have C, as a generalized eigenspace corresponding to, say , £ iA;. Since
we know that each generalized eigenspace is symplectic and pairwise orthogonal, C; will be the
generalized eigenspace of *iA,.

We summarize the above discussions:

Proposition 3.6 The tangent space at the stable equilibrium identified with C2? by (3.6) are
decomposed into irreducible pieces of the induced representation of Z,;

C2 = Co @ Cl
where
Co = (@) |21 +2,=0} and C; = {(z,2))12-2,=0} . (3.7)

Moreover, these irreducible components correspond to generalized eigenspaces of the linearization
of Xy with the eigenvalues * ik, tik,, respectively, A, A, > 0.

From this proposition we conclude that the flows of the linearization L on C; and C, are

equivalent to

multiplicaton by e?™M on Co and multiplication by eZh2 on C . (3.8)

Thus, we have Z, x S! actions on C; and C,, respectively.
Next, we find the isotropy groups of these actions on each of C; and C;:
On C, the isotropy group is Z, x {1} and whole space C, is the fixed point
space of real dimension 2.
On C, the isotropy group is {—1)} x {1} and again the whole space C, is the
fixed point space of real dimension 2.
Therefore, we have the following refinement of Theorem 3.1:
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Theorem 3.7 For dny small € >0, we have at least one periodic orbit with Z,-symmetry and at
least one periodic orbit with {—-1} x {— 1} symmetry on the energy surface H-1(E; + €) in Py

Remarks 1 As we mentioned before, these periodic orbits give quasi-periodic orbits in the
original phase space T*(S! x S! x S1). They have the pictures in Figure 7 in the stick
representation viewed from a rotating frame, i.e., up to the diagonal Sl-action.

Z,-symmetry {-1} x {-1}-symmetry

Figure 7

2 When A, # A,, one can apply an equivariant version of the Liapunov Center Theorem to
produce smooth families of periodic orbits with corresponding symmetries bifurcating from the
stable equilibrium.

3 We conjecture that these perioidic solutions are related to travelling waves for many
bodies and in the continuum limit. ¢

Finally in this section, we examine some aspects of stability. If we let ¢; be the Hamiltonian
flow, then the Floquet operator M(u) of a periodic orbit u(t) with period T is defined by

M(U) = D%(U(O)) : TU(O)P - Tu(O)P . (39)

If M(u) has all eigenvalues on the unit circle, then u is called spectrally stable. Note that
M(u) always has a generalized eigenspace of dimension at least 2 with eigenvalue | 1] because

v'(T) = Dor(u(0)) - u’(0) = u’(0) . (3.10)

Now, let u; and u, be the periodic solutions in Theorem 3.7 whose periods T; and T,
are near 21t/] A, | and 2m/] A, |, respectively. Then we have the following result about the spectral

stability.
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Theorem 3.8 If A, and A, are non-resonant, then the two periodic orbits which were found in
Theorem 3.7 are spectrally stable if € >0 is small.

Proof Note that the Floquet operator M(u;) is close to exp(- T;DXy(2)) as € — 0. Note that T,
= 2n/l ;| and exp((- 2n/| A; )DXy(z)) has eigenvalue whose corresponding generalized
eigenspace is of dimesion 2 and so has one simple eigenvalue pair which lies on the unit circle.
By the general rigidity of the behavior of the eigenvalues of perturbations of a symplectic matrix,
we conclude that the eigenvalues of M(u;) stay on the unit circleif €>0 issmall. =



§4 Chaotic Solutions

In this section we show that the dynamics of the three coupled rigid body system is not
integrable, having chaotic solutions of horseshoe type. This is done using the Holmes and Marsden
[1983] version of Melnikov's method to perturb a homoclinic orbit in a problem with S1
symmetry. There are several homoclinic orbits one can use to perturb; a pair was described in
Theorem 3.4. Here we perturb the two body problem by adding a third body near the center of
mass of the second.

We first need to derive an expression for the Hamiltonian that is written so the perturbing
terms are isolated. Refer to Figure 8.

Figure 8

Let:
O be the hinge point of bodies 1 and 2;
B be the hinge point of bodies 2 and 3, and also the center of mass of body 2;
a, b, d be the vectors between the centers of mass and hinge points of bodies 1, 2, 3 in
the reference configuration;
R(B) be the rotation through angle 6;
r be the vector from O to the system center of mass;
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0, r%, r% be vectors from the system center of mass to the body centers of mass;

0,, 6,, 03 be rotation angles from a reference configuration to the current configuration;

X,, X,, X3 be position vectors for points in bodies 1, 2, 3 in the reference
configuration;

X1» X, X3 be position vectors for points in bodies 1, 2, 3 in the current configuration.

As in [I], we have

x; = RO)X;+r; , ' (4.1a)
r, = r; +R(6,)a +R(6)Db , (4.1b)
r; = rp, +R(63)d , (4.1c)
mr = myr; +m,r; +msr; . (4.1d)

We compute the total kinetic energy as in [I] as

3
2
_ 1 i Ty, P
H = Zl-z-uace(coilwi)+-i-5
i=
1 mp+my . . ms . 2
+ 5 my “ —T(R13+R2b)_'{n_R3d "

1 m; . . msy - 2
+5m “ — Rja+R;b) - — Ryd ||

1 m; . . m; +mj . 2
+ 5 ms " — (Rja+ Rob) - ———— Ryd || : (4.2)

Assume p =0, without loss of generality, and that the reference configuration is chosen so a, b,
and d are parallel. Then we can write

H = Hy = Hy+dH, + 0(d?) (4.3)

where d =|| d || is our small parameter,

1 1
H, = Py (1, + eadw? + 5 G+ b2} +eab cos ¢ 0,0, + -;— Lot , (4.42)
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and
H; = Ylacos (¢ + ) ©;®; + b cos Y 003) (4.4b)
where
m,(m, + m,) m;m m,(m, + m,)
e=_3__L__2_ , Y= 13 , and O = 312 202
m m m

We can rewrite H as H=15, {0, J;0 ) where @ =(®;, 0,, 03)T,

I, eabcos ¢  yad cos(d + )
J,=| eabcosd 1, ybd cos (4.5)
vad cos(¢ +y)  ybdcos y I,

and

I, =L+ea’ , L =L+et” , =1L+

m
Write J4=J, + dJ; + O(d2) where
I, gabcos¢ O
JO = | eab cos q) iz 0
0 0 I,
and
0 0 va cos(¢ + )
I = 0 0 Yb cos y
vacos(d+vy) 7ybcosy 0

We need to write the kinetic energy with respect to the momentum p rather than the angular
velocity. This is done using | = J40:

HyW) = %(u, 19y = Hpw) +dH; (W) + 0@



The Dynamics of Coupled Planar Rigid Bodies, I1

where
oH,y -1 0J - 1y om
W = 55| = -(mJ5 -5d—|d=olo’u> = = (1 Jg JJg ) .
Here,
1 [ i, —gab cos ¢ 0
15V = | A \~eabcos o I, 0

(where A=1,1, - e%a’b? cos?0), and so

35t =

-1
Zl-i— (1,a cos(d + )

- eb%a cos ¢ cos )

Therefore,

and

1!
Z—i— (1,a cos(6 + )

0 2
—€b“a cos ¢ cos )
1!
Y—Z- [~ ea”b cos(¢ + )
0
- cos ¢) +I;b cos )]
1!
Z—Z—— [(~ eab cos(¢ + )
0

- cos ¢) + I;b cos y)]

1 ) 1
Hy = 55 G’ +Ting - 2eabcos g ) + 5 157y’

24

(4.6)

(4.7a)
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-1

I; 'a -
H; = - L 3A H1H3(I; cos(d + ) — eb” cos ¢ cos V)
'YI3—lb 2 -~
-3 Ropts(— ea” cos(d + ) cos ¢ + 15 cos ) . @.7v)

Now, notice that when d =0, i.e,, B coincides with the center of mass of body 3, the system is
completely integrable and we know that the reduced system has two homoclinic orbits, given in
Figure 1 of [I]. This system is in the framework of the Melnikov method with an S! symmetry as
generalized by Holmes and Marsden [1983].

From (4.7a) we see that the unperturbed Hamiltonian Hy has an additional S! symmetry
given by y-rotations; or, equivalently, by 6s-rotations in the original system, which induces the
obvious Poisson action whose moment mapping is exactly ps: T*(S! x S! x §1)/S! — R. Note
that i, + [y + M3 is the moment mapping corresponding to the simultaneous uniform rotation; i.e.,
the diagonal action of S1. The Hy and Hg-flows restrict to the symplectic leaf Ppy = {1y, {, U3,
o, ¥ | 1 +Ho + H3 =M}, and (v, H3) are conjugate variables in this symplectic leaf. Note that the
equations of motion for Hy, are given by

- dH, _ oH, OJH, . dHg
I’l1—-§¢—, “2"_—8'¢—+_a—w_’ l—l3---§\l—,',

(4.8)
dH, oH, . 0H, oH,

i TR A T T

By regrouping equations (4.8), we see that (U, 1,, §) can be separated; after solving this system
we can substitute back to get the equations for (U3, ). Since y is the cyclic variable for H,

. . - 1 -
H3 =0 , vy I3lu3—K(Ilu2-eabcos¢pl) (= 03 - w,)

Q) . (4.9)

Let x(t) = (U;(1), Ho(1), $(t)) be a homoclinic orbit for the (i), Ky, ¢)-dynamics in py + py + Uy
=M, 3 =J where M, J are given constants.
As in Holmes and Marsden [1983], if we set

t
v = J:) Q) ds + g
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we have only to prove that the Melnikov function

Mlyp) = j {Ho, —Q—‘-} (x(t), _[0 Q(s) ds + v, J) dt (4.10)

has simple zeroes to get "horseshoes”, where {,} is the bracket in the varibles (u,, iy, ¢) in
(W +H+ 3 =M, 3 =J}.

Note that Q is an explicit function depending on W, {5, and so will not be a constant as
time changes. For reasons that will become clear, we will consider, instead of the function M(yy),

the function
N, o) = M(Yg) - ——
Yo» Ho/ ¢ Yo WL,
i.e.,
_ J—”{Ho,m x(0), jon(s)dsw(,,J g . .11)
Now,
H/ = o ——-l-{a('f — gaby, cos ¢) cos(d + y) + b cos y(I; 1, — p,abe )}
T A 2M1 Mo v ylIuy — Hiabecos §)s .

From now on, we will drop _ on Tl and 1,, remembering il >ga? and 1,2 eb2
Let us first consider N(y, 0). Then Q(t) = — (I}, — €ab cos ¢ p,)/A, and

Hl’
- = { b cos ¥ + a cos(¢ + )

I,u; — eaby, cos ¢
I,n, — €aby, cos ¢

t t
{b (cos J; Q(s) ds - cos Yy, — sin JI Q(s) ds - sin \yo)
0

121»11 —gab Hi COS W)
+a

t
cos (cb + j Q(s) ds) cos
Ipl, — €abjl cos Y 0

—sin ((b +£ Q(s) ds) sin \y} . (4.12)

We can assume without loss of generality that y; and W, are even functions and ¢ is an odd
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function; then  is an even function and so

I(: Q(s) ds

is an odd function of t. Thus

H, t I}, — €abyl, cos t
{Ho, -g—;-} = {Ho, b cos J:) QG)ds+a Ijt; - eabﬁf — i cos (¢ + J; Q(s) ds)} oS

" L, —eaby, cos ¢ ( t )
. oo+ [ 20 ) s
{ 0> b sin A (s)ds+a T,11, — €abp, Cos O sin| 0+ A Q(s) ds | sin g

_ L1, — €aby, cos ¢ ( t
= {Ho, 2 15, eabp, cos 6 °°° ) +J; Q(s) ds | cos

L, — €aby, cos ¢ ( t .
- { Hy, a T1,— Eabi,; Gos 0 sin| ¢ + -[0 Q(s)ds |p sinyy . 4.13)

By symmetry, the first term of (4.13) will vanish after integration. Thus,

* { i, — €aby, cos ¢
Ho, a

t
I, — eaby, cos ¢ sin (¢+ J'o Qs) ds)} disingy .  (4.14)

N(yg, 0) = - j

Thus, what we have to do is prove that

~ Ipp, —eabuy cos ¢ ( '
J‘_“{HO, 8 L, “eabp, cos 6 1 ¢+J; Q(s)ds | dt = 0 .

Assume, for example, that I; =I, =1 and a=b=1. Then the integrand becomes
In, —epycos ¢ '
{HO, T, —e5, 005 0 sin| ¢ + -[0 Q(s) ds

. 9 [Iu—epycosd ‘
= ¢-§6{ T, "6, cos b sin (¢+L Q(s) ds)}

. (0 d In, —€pycosd t
~h (aﬂa - ol ){ In, —epycos ¢ Sm(¢+_[0 Qfs) ds)} . @4.15)
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Here
Isi 2_ 2 ¢
%{ y = €l sin ¢ (uy 1112) sin(¢+J Q(s)ds)
(Tn, —p, cos ¢) 0
Iy ~ €R, cos t
+ Th en; cos g O (¢+ A Q(s) ds)
and

: P ¢? cos? .
('a‘q“?)é‘){ p o - L€ cor il +hy) sin(¢+ [ a6 ds) .
H2 ol (T, — ey cos ¢) 0

28

4.16)

4.17)

Let us express W,, 1, as functions of ¢ for one of the homoclinic orbits which is in the

(11, My, §)-dynamics. It is given as the intersection of W, + |, =M -J and

1 1 M-1J)°
Hy = 55 (' +Tug' ~2ecos o ) = 7 ——
(the energy of the homoclinic orbit).
Set v =, > H,. Then we can write
H = _}_( M -1)° N v }
0™ 4\I+ecos¢ I-ecosdp) °
When
_ _{((M-J)z)
0T 4\ 1-¢ J°
we get
= +T __B 1-Pcosd _
v = VT (M-J) where I' = 7o (1+cos9) TThcose ™4 B =

Consider the homoclinic orbit obtained from v = v -F(M —~J). Then

] m

(4.18)

(4.19)

(4.20)
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1+VT —\T
My = +2 M-J) and u1=l 2\1_

Substitute (4.21) into (4.16) and (4.17) to get

M- . 4.21)

' \

R ABsin o T sin(¢+ "Qs) ds

{(1 - B cos ¢) + T (1 + B cos &)} 0 y,

(1-B cos ¢) — VT (1+B cos ¢) ( t \
(1-PBcos ¢) +VT (1 +P cos §) 608 ¢+Jo Q) ds) ’ @.22)

d d 4(1 - B2 cos’p)M - 1)’ _ ( )
-y AR el +| QGs)ds | . (4.23)
(au2 aul) {(I—BCOS¢)+‘I—I=(1+BC03¢)}2 Sin ¢ J: S) as

And

. dy, . 1
K = —&(T'(b =-Z(M_J)'ﬁ¢ .

Thus N(yg, 0) = A; + A, + Aj, where

A, = J-_” —4Bsin VT ¢

t
> sin ((p + J As) ds) de , (4.24a2)
= ((1 =B cos ¢) + VT (1 + P cos ¢)) 0

_‘r (1-Bcos®)—VT (1 +Bcosd) .

t
A, = — ( ds)d , .
2 - (1—[3cos<l>)+\fl‘(1+[3cos¢)q)Cos ¢+~[0 %) ' (4.240)

1—B2c052¢ r. . ( t )
= — —¢sin| ¢+ | Qs)ds |dt . (4.24¢)
s "““ ((l—Bcos¢)+\/F(1+Bcos¢))2 T jo 57 ¢

Now, note that

1 Ipn, ~ € cos 1 ~ B cos
Q= -+ au-ecosony = - 2 O _ 1 M-Beosom

- ¢ cosz¢ I - [32 cos2¢

4.25)

and that all the integrand decays exponentially as t — £ oo, Therefore all the above integrals are
analytic functions with respectto 1/I and B, 0 <B <1, 0< 1/I, and are continuous in the range
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0<PB <1, 0<1/I. We will consider the limiting case when I'= co. Then Q=0 and so (4.24)
becomes

A, =J’ ~4Bsin¥T'¢ ~singdt , (4.262)
= (1 —Bcos®)+ VT (1+Pcos )
* (1-PBcos®)-NT (1 +Bcos¢) ,
Ay = — de , .
2 J‘-w (1-PBcos )+ VT (1 4P cos ¢) $osgdt “26)
o 2.2
A = Ji 1P cos’0 L osinod . (4.26¢)

“ (1=B cos §) +VT (1 +Bcoso)® VT

Changing variables, these become

- 20 T
A = J'" 4B sin ?_ VT do , w2
" ((1-Pcos §) +VT (1 +Bcos ¢))
" (1-Bcos®) =T (1 +Pcos ¢)
A, = - b | |
2 j_n (1~ B cos ¢) +VT (1 + B cos ) cos ¢ do (4.27b)
A -r 1- B cos’d r .
P sin¢d¢ . (4.270)

T ((1—[Scoscb)+\’-I=(l+[3cosq>))2 VT

It appears to be difficult to directly check whether the sum A, + A, + A3 is not equal to
zero. To deal with this, let us compare the order of A;, A,, and A; as v B_—-> 0. The order of
A, is O(B32). For A, and As,set VB=3 toget

(1- 5% cos ¢) — S ] (1 +cos 9)(1 - 8* cos0)

n 1-8°
N /

o
1-8°

cospdd .  (4.28)

®(1-8%cos ¢)+ ‘\/(1 +cos §)(1 — 8* cos?¢)
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\/(1 + cos ¢)(1 + 8% cos ¢)

.,/1._52 1- 8% cos ¢
\/(1 cos $)(1 + 8% cos ¢

,,/ 1—82005¢

cosddd . (4.29)

The integrand is equal to

1-9 (1 + -;— &+ 0(84))(1 + 8% cos o+ OEHVT + cos §

cos ¢

1+8 (1 + % 8%+ 0(84))(1 + 8% cos ¢ + O(B))VT +cos 6
13 5
= (1—(8+-55 (1+2cos )+ 0 ))Vl+cos¢)

X {(1 -9 (1 + -;— 8%(1 + 2 cos o)+ 0(84))\/'m)

2
3 (1 + cos ¢) 52 (1 + = 8%(1+2cos o) + 0(84))

N

%(1+cos¢)3’253(1+ 82(l+2005¢)+0(84))}cos¢+0(84)
—_— 3 2 3

- cos¢{1-2«/1+cos¢5+5(1+oos¢)5}+0(8) . (4.30)

Now check the coefficients of & and 82 in (4.29); the coefficient of § is equal to
§ 8
2‘[ V1+cos¢ cospdd = -3—‘/5 .
-T

For Aj,

= B —sm¢(1—[5 cos¢)+2[35m¢cos¢(1+cos¢)
1-B (1 + B cos 0)°

Thus the coefficient of &=V -B— in the expansion of Az is computed as
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T —sin2¢ 8
Y gp=-ovD .
~n VT +cos ¢ ¢ 3

Unfortunately, the first order termin 8 in (4.29) vanishes, so we must check the coefficient
of 2. From (4.30), the coefficient of & in A, equals '

L
—~-§—J cos¢(l+cosdp)dp = ~6m .
-n
Similarly, the coefficient of 82 in the expansion of A3 is computed to be
T 2
I 2s5in“pdo = 4x .
-

Thus the coefficient of 82 in A; + A, + A3 is given by — 6% + 4% = — 25 # 0. Therefore the

coefficient of 82 in the expansion of N(y, 0) with respectto B when 1-—3 oo is not equal to

zero. From this, we can conclude that the Melnikov integral has only simple zeros for generic
parameter values if the distance between the hinge points and the center of mass of the third body is
small. We summarize:

Theorem 4.1 If the distance between the center of mass of the third body and its hinge point is
sufficiently small, then apart from isolated values of the system parameters, the dynamics of the
three body system has Poincaré-Birkhoff-Smale horseshoes, so is non-integrable.



§5 Discussion

In this paper we have developed a fairly complete picture of the dynamics of the planar 3
body stystem. The kind of analysis we have presented enables one to study equilibria and their
stability, bifurcations of equilibria, periodic and chaotic solutions. Computer graphics of the
dynamics illustrating these features has been developed by Sreenath [1987].

While this analysis may be difficult to extend to a complex structure of n bodies, the detailed
understanding of the dynamics of 3 bodies helps us to understand the relation between chaos,
coherence, and stability in more complex structures and in the continuum limit n — . In fact, it is
proved in a preprint of Y.- G. Oh that the straight - out configuration of the finite coupled rigid n -
body system is always stable, but its continuum analogue turns out to not be formally stable.
Moreover, we also have a good understanding of the special structure of periodic orbits bifurcated
from the equilibrium for the symmetric coupled rigid body system.

We also point out that the detailed understanding of the Hamiltonian structure via symmetry
reduction should assist in the development of numerical algorithms and the control theory for these
systems.

In Grossman, Krishnaprasad, and Marsden [1987], the dynamics of coupled three
dimensional rigid bodies is studied. The analysis there indicates that there may be a symmetric
Hamiltonian Hopf bifurcation leading to interesting periodic and chaotic motions. Again one can
conjecture the possibility of interesting three dimensional waves, such as helical waves, being built
from an understanding of the few degrees of freedom situation. An eventual goal is to link this
theory up with the infinite dimensional case in Krishnaprasad and Marsden [1987], Simo,
Krishnaprasad, and Marsden [1987] and Krishnaprasad, Marsden, Posburgh, and Simo [1988].
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